
Designing Classes

Check out DesigningClasses project from SVN

It starts with good classes…

}  Come from nouns in the problem description
}  May…
◦  Represent single concepts
�  Circle, Investment
◦  Represent visual elements of the project
�  FacesComponent, UpdateButton
◦  Be abstractions of real-life entities
�  BankAccount, TicTacToeBoard
◦  Be actors
�  Scanner, CircleViewer
◦  Be utility classes that mainly contain static methods
�  Math, Arrays, Collections

Q1

}  Can’t tell what it does from its name
◦  PayCheckProgram

}  Turning a single action into a class
◦  ComputePaycheck

}  Name isn’t a noun
◦  Interpolate, Spend

Q2

Function
objects are an
exception.
Their whole
purpose is to
contain a single
computation

*See http://en.wikipedia.org/wiki/Code_smell
 http://c2.com/xp/CodeSmell.html

}  Cohesion

}  Coupling

}  A class should represent a single concept
}  Public methods and constants should be

cohesive
}  Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q3

}  When one class requires another class to do
its job, the first class depends on the second

}  Shown on UML  
diagrams as:
◦  dashed line
◦  with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4-Q6

}  Lots of dependencies == high coupling
}  Few dependencies == low coupling

}  Which is better? Why?

Q7

}  High cohesion

}  Low coupling

}  Accessor method: accesses information
without changing any

}  Mutator method: modifies the object on
which it is invoked

Q8

}  Accessor methods are very predictable
◦  Easy to reason about!

}  Immutable classes:
◦  Have only accessor methods
◦  No mutators

}  Examples: String, Double

}  Is Rectangle immutable?

}  Easier to reason about, less to go wrong

}  Can pass around instances “fearlessly”

Q9

}  Side effect: any modification of data

}  Method side effect: any modification of data
visible outside the method
◦  Mutator methods: side effect on implicit parameter
◦  Can also have side effects on other parameters:
�  public void transfer(double amt, Account other)
{
 this.balance -= amt;
 other.balance += amt;
}

Avoid this if you can!

}  High cohesion
}  Low coupling
}  Class names are nouns
◦  Method names are verbs

}  Immutable where practical
◦  Document where not

}  Inheritance for code reuse
}  Interfaces to allow others to interact with your

code

Coming attractions

See HW16 –Chess exercise
Work in groups of three or
four on the whiteboards

Static fields and methods …

}  static members (fields and methods)…
◦  are not part of objects
◦  are part of the class itself

}  Mnemonic: objects can be passed around, but
static members stay put

}  Cannot refer to this
◦  They aren’t in an object, so there is no this!

}  Are called without an implicit parameter
◦  Math.sqrt(2.0)

◦  Inside a class, the class name is optional but much clearer to
use (just like this for instance fields and methods)

Class name, not object
reference

}  The main() method is static
◦  Why is it static?
◦  What objects exist when the program starts?

}  Helper methods that don’t refer to this
◦  Example: creating list of Coordinates for glider

}  Utility methods like sin and cos that are not
associated with any object 

◦  Another example:
public class Geometry3D {
 public static double sphereVolume(double radius) {
 ...
 }
}

Q10

}  We’ve seen static final fields

}  Can also have static fields that aren’t final
◦  Should be private
◦  Used for information shared between instances of a

class
�  Example: the number of times a particular method of

the a class is called by ANY object of that class

Q11

}  private static int nextAccountNumber = 100;

}  or use “static initializer” blocks:
 public class Hogwarts {

 private static ArrayList<String> FOUNDERS;

 // …
}

 static {
 FOUNDERS = new ArrayList<String>();
 FOUNDERS.add("Godric Gryfindor");
 // ...
 }

}  Run the program in the polygon package
}  Read all the TODO’s in the Polygon class
}  Do and test the TODO’s for most number of

sides, asking questions as needed
}  Do and test the TODO’s for least number of

sides
•  You might find the constant Integer.MAX_VALUE

helpful

Q12-Q13

Homework 16: Polygon

